脱毛

ケノンの脱毛器のvioにこんな事実が

ケノン,脱毛器,vioアイキャッチ画像

ケノンの脱毛器のvio・ポイント!

写真

写真

写真(しゃしん、古くは寫眞)とは、
英語の”という語は、イギリスの天文学者ジョン・ハーシェルが創案した。

は「光の」、は「かく(書く、描く)もの」「かかれたもの」という意味で、日本語で「光画」とも訳される。”から、略して”フォト”と呼ぶこともある。
日本語の「写真」という言葉は、中国語の「真を写したもの」からである。
光に対してレンズやカメラ等の機器を用いて、屈折、遮断等の光学的な操作を行ない、特定の波長の光に感光する物質(感光材)に照射し、感光させる。感光させた感光材に対して、必要ならば現像等の可視化や定着等の感光能力の消失等の操作、焼き付けや印刷等により明暗の反転や拡大を行なうなどして、最終的な画像を得る。得られた画像は再び光を当てて鑑賞することが可能である。
銀塩写真の原理も語も以前と何ら変わるものではないが、ディジタルカメラの普及以降、レトロニム的に単に「写真」ではなく銀塩写真と明示的に言うことも多くなった。なお、「アナログ写真」という語は「デジタル写真」の「デジタル」を単にすげ替えた単なるレトロニムでしかない。
ハロゲン化銀は光が当たると銀イオンが還元され、金属銀微粒子の核ができる。感光して銀粒子核の潜像となってもそのままでは画像にはならない。感光した部分にある銀はごく少量のため、適当な量まで銀粒子を成長させて可視化する必要がある。これは現像処理で行なう。また、感光しなかった部分はそれ以上感光しては困るため、不要な部分のハロゲン化銀は取り除く必要がある。これは定着処理で行なう。
ハロゲン化銀は感光する時、波長を吸収する領域が青色に寄っている。そこで可視領域に渡って感光させるために感光色素を用いて本来の吸収波長以外にも反応が起こるように設定する。まず感光色素が光に反応し、色素の電子がハロゲン化銀へ移動することによってハロゲン化銀の直接の感光と同様の変化が成立する。可視的な電磁波の特定の波長領域にのみ感光するようにし、三原色に対応するように感光層を重ねるとカラーフィルムになる。
デジタルカメラやテレビカメラ、ビデオカメラでは、撮像素子として、撮像管などを使ったものでないものは、固体撮像素子を使っている。固体撮像素子は、微小なフォトダイオードが規則的にびっしりと並んだものであり、光子がpn接合に入ると電子を叩き出して電荷が発生する、というものである。量子効率は銀塩写真のハロゲン化銀の場合よりもはるかに高いため、高感度である。これを走査して信号として取り出し、AD変換器へ送る。あるいは電子スチルビデオカメラ等ではアナログ信号のまま直接FM変調などによって磁気テープ等に記録する。
撮像管の場合は、光電効果による電荷を、磁界ないし電界によって走査される電子ビームによって読み取り、電子信号とする。
写真の感光量は光の量(単位時間あたりの光の量×光が当たった時間)によって基本的に決まる。これを相反則(ソウハンソク)という。ただし、感光量は入射した光の量にどこまでも比例するのではない。未露光部はベースフィルム以上淡色にはならないし、感光するハロゲン化銀は限られているから一定以上の光を当ててもそれ以上濃くならない。従って、光の入射量と画像の濃さをグラフにするとシグモイド関数のようになる。変化の中間部は直線的であり、この部分の傾きのことをガンマという。
露光時間が極端に短かったり長かったりする場合には、相反則が成立しないことがある。これを相反則不軌という。カラーフィルムでは色毎に相反則不軌の状態が異なるため、カラーバランスが崩れる問題がある。短いほうは通常のカメラの、数千分の1秒程度では顕在化しないため通常は気にされることはない。一方長い方は、夜間や天体の撮影で問題になる。
フィルムの場合、冷却することで長時間露光時の相反則不軌を低減できることが、経験的に知られている。相反則不軌は天体写真を撮る時などに大きな問題となる。1977年頃には長時間露光時の相反則不軌対策や分光感度を調整した天体撮影用のスペクトロスコピック感光材料が市販されていたほどである。
なお、長時間露光においては相反則不軌とはまた別の問題もある。現在利用可能なオプトロニクスによるデジタルカメラでは、画像に熱雑音と製作不良から発生するランダムノイズが乗る。一部のデジタルカメラでは長時間露出する際のノイズを軽減する機能が付いている。非常に長い時間露光する場合、ノイズが最終的な画像に影響しないように撮像素子を低温で動作させる必要がある。天文撮影や科学機器では冷却機構が最初から設計に含まれているものもある。
写真撮影(しゃしんさつえい、、フォトグラフィ、)とは、カメラによって静止画(スチル写真)を記録する行為のこと。
カメラおよびカメラ・オブスクラは撮影機器である。写真フィルムまたは電子的記録カードが記録媒体であるが、ほかの方法が採られることもある。例えば、光学コピーや乾式コピー(ゼロコピー)は長期的に使用可能な画像を作るが、写真フィルムではなく静電気の移動を使っているので、電子複写(静電複写)という。マン・レイの刊行したレイヨグラフなどのフォトグラムは印画紙に投影された影でできた画像であり、カメラを用いない。スキャナのガラス面に直接撮影対象を置くことによって、電子複写を行うことも可能である。
撮影者は記録媒体を必要な量の光に露出する目的で、カメラとレンズを選択・操作できる(記録媒体として通常は、写真フィルムか固体撮像素子を使う)。
選択・操作の対象には以下のものなどがあると思われる。カメラの操作は互いに関係する。
フィルム面に到達する光の総量は露出時間、レンズの絞りによって変わる。このうちどちらかを変えれば、露出が変わる。(物理的なシャッターがないカメラであっても)露光時間はシャッター速度で表される。露光時間が1秒より短い場合は通常分子が1の分数で表記され、それはカメラのシャッター速度設定ダイヤルに明記されている場合、秒の逆数で表示されている場合が多い。絞りはF値で表示されているが、これはレンズの明るさを表している。Fは焦点比のFである。F値がルート2分の1倍になる毎に絞りの直径はルート2倍大きくなり、絞りの面積は2倍になる。典型的なレンズに刻まれたF値は、2.8、4、5.6、8、11、16、22、32などであるが、これは数字が大きくなる毎に光の量が半分になっていくことを意味する。
特定の露出のシャッター速度と絞り値は、さまざまな組み合わせが成立する。例えば、125分の1秒でF8と500分の1秒でF4では同じ量の光が得られる。当然ながら、どの組み合わせを選んだかは最終的な仕上がりに影響する。シャッター速度の変化は対象とカメラの動き(ぶれなど)の反映の度合いを変える。絞りの変化は被写界深度を変える。
被写界深度は焦点の前後に広がるピントがあっているように見える範囲のことである。例えば長焦点レンズ(望遠レンズ)を絞りを開いて使用した場合、対象の目には鋭く焦点が合うとき、鼻の頭はピントが合って見えないということが起こる。反対に短焦点レンズ(広角レンズ)を使用し、絞りこんで(絞り値を大きくして)遠距離に焦点を合わせて使えば、対象の目にも鼻にもピントが合って見える写真を撮影することは容易である。
長焦点レンズを使用し、絞りを開いて近距離に焦点を合わせれば、被写界深度は極端に浅くなる。反対に短焦点レンズを使用し、絞りこんで(絞り値を大きくして)遠距離に焦点を合わせれば、被写界深度は極端に深くなる。絞り値、焦点距離、焦点の位置が同じでも、レンズのF値(絞り開放時のF値)によって被写界深度は異なる。また、レンズのF値が同じでも設計・表記と実際との差などにより被写界深度は異なる。ピンホールのように、非常に小さい絞りを使うとごく広い範囲にピントを合わせることができる。これはパンフォーカスと呼ばれる。
材質にかかわらず、カメラが捕らえた像を最終的な写真作品にするには、何らかの工程が必要である。この工程には現像と焼き付けなどがある。
焼きつけ工程では、いくつかの調整によって結果を変えることができる。こうした調整の多くはイメージキャプチャーなどで行われる調整に似ているが、引き伸ばし機を用いた焼きつけ工程に固有のものもある。大部分はデジタルによく似た調整であるが、大きく異なる効果をもたらすものもある。
調整には次のものなどがある。
100%コットンなどのバライタ印画紙、RCコート紙、水彩紙を応用したインクジェットプリンター用紙(デジタル用)などは独特の風合いがあり、黒や紙の白の発色、色合いはさまざまである。プリンターの高性能化に伴い、デジタルでのモノクロームプリントが多くなった。デジタル写真・デジタル化された写真においては、「カラー」から「モノクローム」への変換は容易である。
カラー写真は1800年代にアレクサンドル・エドモン・ベクレルらにより開発が始まった。初期のカラー実験では像を定着させることができず、更に退色し易かった。初期の高耐光性のカラー写真は1861年に物理学者のジェームズ・クラーク・マクスウェルによって撮影された。彼は3原色のフィルターを一枚ずつかけて3回タータンのリボンの写真を撮影し、3原色中1色のフィルターを掛けた3つのスライドプロジェクタで画像を投影してスクリーン上で合成することにより、撮影時の色を再現することに成功した。しかし、赤色の再現に問題があったうえ(画像では紫を帯びている)、この試みは1890年代になるまで忘れられてしまっていた。
マクスウェルが手法を確立した初期のカラー写真は、それぞれ異なるカラーフィルターレンズを前面に持った3つのカメラを使うものであった。この技法は暗室や画像処理工程に3系統の処理設備を必要とし、カラー用の印画紙がまだなかったため観賞はスライドで見るのに留まり、実用化までにはいかなかった。当時は必要な色に対する適当な感度をもつ乳剤が知られておらずカラーフィルムを製造することができなかったため、ロシアの写真家セルゲイ・プロクジン=ゴルスキーは3枚のカラー写真乾板を連続して素早く撮影する技法を開発した。
1868年にフランスのルイ・デュコ・デュ・オーロンはカーボンプリントに減法混合を用いることにより初めてカラー写真を紙に定着させることに成功した。この原理は現在も印刷技術に用いられている。
1873年、ドイツの化学者ヘルマン・ヴィルヘルム・フォーゲルによりついに赤と緑に適当な感度を持つ乳剤が開発され、カラーフィルムへの道が開けた。
1891年、ルクセンブルクのガブリエル・リップマンは3色干渉によるカラー写真を開発し、この功績により1908年にノーベル物理学賞を受賞した。この技術は実用化こそされなかったものの、現在ではホログラフに応用されている。
1904年、フランスのリュミエール兄弟によって最初のカラー乾板である「オートクローム」が発明され市場に現れた。これは染色したジャガイモのデンプンで作られたスクリーン板フィルターに基づいたもので、ドイツのアグフア(後のアグフア・ゲバルト)が1916年に染色したアラビアゴムの細粒で作られたフィルターを使用する「アグフア・ファルベン・プラッテン」を発明するまでは市場における唯一のカラー乾板だった。
1930年、アメリカ合衆国のジョージ・イーストマンは100万ドルの賞金をかけてカラー写真の簡易方法を募集した。音楽家のとは、多層乳剤方式のカラーフィルムを考案し応募してコダックに入社、同社の研究陣と協力して1935年、最初の近代的なカラーフィルムである「コダクローム」を発売した。コダックは当初コダクロームを「神と人により創られた」と宣伝していた。日本の最初のカラーフィルムは1940年に小西六写真工業(現・コニカミノルタホールディングス)が発表したコダクロームと同方式の「さくら天然色フヰルム」であり、続いて富士写真フィルムも「富士発色フィルム」を公表している。
1936年にはアグフアの「アグフアカラーノイ」が追従した。アグファカラーノイはIG・ファルベンインドゥストリーにより開発された発色剤を乳剤層に含有させたもので、発色現像が1回で完結されるなどフィルムの処理が大幅に簡略化されていた。コダクロームを除くほとんどの近代的カラーフィルムは、アグフアカラーノイの技術に基づいている。
インスタントカラーフィルムは1963年にポラロイドから発売された。
カラー写真は、スライドプロジェクタで使うための陽画の透過フィルムとして像を撮ることもできるし、陽画の焼き付けを作るためのカラー陰画を作ることもできる。自動プリント機器の登場によって、現在では後者が最も大衆的なフィルムである。
感光材料にハロゲン化銀を使用せず他の材料を使用する写真の総称で写真技術の黎明期から開発が進められ、青写真やジアゾタイプが実用化された。シルバーショック後に脱銀化が加速したが従来の銀塩写真を置き換える用途においては感度、貯蔵性に劣り、デジタルカメラの普及まで実用化には至らなかった。
デジタル写真は画像を電子データとして記録するためにCCDイメージセンサやCMOSイメージセンサといった固体撮像素子を用いる。携帯電話などにもデジタルカメラ機能が付いているものがある(カメラ付き携帯電話)。デジタル写真を写真と認めない人もいるが、デジタルカメラで捉えた像は見ることもプリントすることもできる。2018年現在、デジタルの自動露出・自動焦点カメラは一般に広まり、フィルムカメラをほぼ駆逐した。動画撮影や録音など、フィルムカメラにはない機能を持っている機種もある他、従来の中判カメラに相当する大きさの撮像素子を持つレンズ交換式デジタルカメラもある。なお、スマートフォンの普及により、廉価なコンパクトタイプのデジタルカメラは市場が縮小しつつある。
写真処理施設からの遠隔地で仕事をする新聞記者などのカメラマンにとって、テレビジョンとの競争が激化するにつれ、新聞に載せる画像を短い時間で送付しなければならなくなった。このため遠隔地で仕事をする新聞記者達は一時期小型の写真現像セットと電話線で画像を送るための道具を持ち歩くのが当たり前で、大きな負担となった。1981年、ソニーが画像撮影にCCDを使い、フィルムを用いない最初のコンシューマ用カメラ「マビカ」を発表した。マビカは画像をディスクに保存し画像自体はテレビに表示するものであった。次いで1990年にコダックが初の市販デジタルカメラDCS100を発表した。その価格は業務用でもなければ手が出ないものであった。商業的なデジタル写真がこのとき生まれたのである。
写真の性質はフィルムとデジタルで異なるが、共通した観点が存在する。以下、観点を幾つかの性質に分けて紹介する。フィルムとデジタルのどちらが優れているかという議論があるが、全ての観点において一方がもう一方よりも優れているとは言えず、どちらもそれぞれの良さがある。
ここでの再現性は画質とほぼ同義である。写真の画質を判断する基準は多数あるが、分解能、コントラスト、色再現性が骨子と考えられる。ここでは分解能をとりあげる。これについて、その写真が何個の画像セル(ピクセル)で構築されるかで計ろうとする試みがある。
フィルム写真とデジタル写真を比較するとき、フィルムを撮像素子の画素数に換算するとどの程度かと考えがちだが、何よりもまず両者はあまりに異なる。そのため、フィルムとデジタルで分解能を比較をするのは容易でない。分解能の測定はさまざまな条件に依存する。フィルムの場合、フィルムの寸法・サイズ、粒状性などのフィルムの性能、用いたレンズの性能に依存する。フィルムにはピクセルが存在しないため、フィルムにピクセルが存在するものとして計測した分解能は目安に過ぎない。デジタルカメラではセンサー画像の補間に用いる画像処理アルゴリズム、センサフィルタのバイヤーパターン(”Bayer pattern”)の効果、記録画質などが関係する。加えて、デジタルカメラの撮像素子や表示装置の画素の配列は、規則正しい繰り返しパターンを持つため、モアレを生じる場合があるが、フィルムの感光粒子は不規則に並んでいるためこのような現象は起こらない。24×36mm(ライカ)判カメラで撮影した写真の解像度評価はまちまちである。例えば、10メガピクセルという評価がある。より粒子の細かいフィルムを使うとこの数字は上がるし、低級の光学系の使用や劣悪な照明や不適切な現像がこの数字を下げることもあり得る。この評価は2007年の最新鋭デジタルカメラはライカ判カメラよりも優れているという評価を含意している。ただし、35mmフィルムは一般消費者向けのフォーマットである。プロ向けフィルムカメラとして中判カメラ、大判カメラがある。これらに先の数値を単純にあてがうと、2007年現在の最新鋭デジタルカメラより優れた分解能を持つことになる。具体的には、6×4.5cm判のフィルム写真は約36メガピクセル、4×5in判は約130メガピクセルである。8×10in判は約540メガピクセルになる。しかし、20メガピクセルや7メガピクセルという評価もある。ライカ判フイルムはISO50クラスの低感度で20メガピクセル相当というのは銀粒子のサイズなどから計算されたものであり、実効的には空間周波数的にみて、色調的・階調的に平坦な特性を有するのはそのおおむね40%程度であり、それ以下の細部描写は空間周波数に比例して劣化してくることからおよそ8メガピクセル程度、とみるのが正しい。やはりフイルム感光粒子の並びやサイズの不均一性や分散性・乳剤層の厚みによる焦点のにじみなどの物理的限界からみてもこれは疑いようがないといえる。
高性能レンズを用い理想的な露出で撮影した現代の超微粒子白黒フィルムの分解能は、30メガピクセル以上のファイルサイズにおいて適当な細かさが得られる。一般消費者向けライカ判カラーフィルムでは12メガピクセル以上に、安価なライカ判フィルムカメラ(コンパクトカメラ)でも8メガピクセル以上に価し得る。
画像の表示に用いる媒体も考慮に入れる必要がある。例えば、せいぜい2メガピクセル程度のものが主流であるテレビやコンピュータのディスプレイで写真を表示するのみであれば、ローエンドのデジタルカメラで出せる解像度でさえ十分と言える。4×6inのプリントに出力する場合に限っても、デジタルとフィルムの間に知覚できる差はある。出力媒体が大きな広告版なのであれば、高い解像度をもった媒体か大きな判が必要になるだろう。
現在ではまだ、融通性に関してはフィルムがデジタルに勝ると言える。露出寛容度とゴミ・ほこりに対しての比較を挙げる。
露出寛容度は、露出過多または露出不足のネガから良い画像を得る度合いのことである。デジタル画像ではわずかでも露出過多になると、ハイライトが飛んでしまう。露出不足では陰影の細部が失われがちである。しかしフィルム、特にネガフィルムであれば、少々露出過多ないし露出不足のフィルムを使っても、正常の範囲内と言える画像が得られる。
結像面に乗ったちりは、撮影者につきまとう問題である。デジタルカメラのセンサーは固定であり、デジタル一眼レフではちりを除くのが困難である。ただし、一部のデジタルカメラにはイメージセンサーのちりを検知しセンサー上のゴミ・ほこりをある程度除去する機構が付いている。フィルムカメラでは画像ごとにフィルムを交換するので、ちりに対処するのは容易である。その代わり、フィルムの現像工程以降でゴミ・ほこりが混入する危険が存在するが、いずれも正しい手順で清潔に扱えばほとんど問題は起きない。
利便性はデジタルカメラが普及した要因の一つである。フィルムカメラでは一連のフィルムを撮影した上で現像しなければならない。そして現像を終えて初めて写真を見ることができる。他方ほとんどのデジタルカメラは液晶ディスプレイを備えており、撮った直後に写真を見ることができ、またその場で不要な写真の削除が可能である。
デジタルカメラの画像はパソコンで加工することが容易である。多くのデジタルカメラは画像を、センサーからの出力を画像に変換せずそのまま保存するRAWフォーマットで保存することができる。適当なソフトウェアと組み合わせれば、最終的な画像に「現像」する前に、撮った写真のパラメータ(シャープネスなど)を調整することができる。記録された画像自体を加工したり書き換えるという選択肢も存在する。
フィルムもスキャニングという工程を経てデジタル化できる。つまり、銀塩写真をデジタル写真に変換できる。
NASAでは、スペースシャトル等の打ち上げ直前の記録写真の撮影に、現在でも限定的にフィルムカメラを使用している。これは規格外の超大型フィルムを用いて、1枚の遠景写真からボルト1本まで確認できるほどのもので、トラブルが起きた時に写真を検証し、打ち上げ前から異常があったのかどうかを後で確認するために使われている。フィルムカメラではどんなにフィルムが大きくても、露光にかかる時間は大きく変わらないが、デジタルカメラではデータ量に比例して保存に時間がかかる。また、巨大なCCDや、保存装置にかかる電力が増え、バッテリーや冷却装置も含めると機器はさらに大型・重量化してしまう。このため、一人の写真技師が徒歩で数か所から打ち上げ点を撮影するという任務には、デジタルカメラは不向きであった。
同様の欠点は初期の民生用デジタルカメラでもあり、高解像度の撮影をすると、保存に時間をとられてシャッターチャンスを逃したり、バッテリーが減ったりしやすかった。その後の技術革新でこうした問題は改善されてきた。
2つのフォーマットにおける経済的優越性は撮影のスタイルによって大きく変化するので、一概にどちらがより経済的だとは言えない。デジタルカメラは概して、似たカテゴリーのフィルムカメラより高価である。これは撮影自体と画像の短期的な保存にほとんど全くコストが掛からないということで相殺され得る。だが、デジタル写真にもランニングコストはある。長期的に多数の画像を保存するなら(フィルムと同じく)記録メディアなどに関する費用は甚大である。デジタルカメラにフィルムは不要だが、画像を記録するSDメモリーカードやメモリースティックなどを必要とする。(フィルムにも言えるが、)それらは限られた寿命しかない。そして、ハードディスクや光ディスクなど、デジタル画像を保存するメディアを用意しなければならない。(これもフィルムにも言えるが、)プリントが欲しいなら自分で印刷するか業者に依頼しなければならない。さらに、(これもまたフィルム式のカメラにも言えるが、)デジタルカメラはバッテリーを使う。バッテリーは使うごとに劣化するものであり、充電式であっても定期的に買い替えるものである。
他方、フィルム写真ではフィルムの取得と画像処理(プリントなど)にコストが掛かり続ける。フィルムは撮影直後に画像を見ることができないので、最終的な写真を知ることなく撮影した全てのフィルムを現像処理するのが通例である。写真の出来に応じて現像するか否かをコマごとに決めることはできない。機材の価格については、製造撤退や機種の生産整理などが進めばデジタルカメラより相対的に高価になる可能性はあるが、中古市場での流通量も多く、一概には言えない。また多くのフィルムカメラもバッテリーを使い、程度の差はあれデジタル同様の消耗品出費は避けられない。
フィルムが作るのは一次画像であり、これは撮影レンズを通った情報を含んでいる。オルソクロマチックのように特定の周波数領域に限られた感度またはパンクロマチックの幅広い感度といった違いはあっても、色(波長)によって対象を捉える点は同様である。現像方法の違いにより最終的なネガやポジに差は出るが、現像が終れば画像はほとんど変化しない。理想的な状態で処理・保存されたフィルムは実質的に100年以上変わらず性能を発揮する。プラチナの化合物によって発色するプリントは基本的にベースの寿命に制限されるのみであり、数百年ほどは持つ。高い保存性を欲するならば調色が必須であるという因襲があった。調色されたプリントの保存性は高い。しかし現在では、調色せずとも保存性を高める薬品が販売されている。
2007年時点で、コンピュータを中心としたデジタル媒体が登場してから50年程しか経っていないので、デジタル写真の保存性はフィルムほどには分かっていない。しかし保存に関して乗り越えなければならない点が少なくとも3つ存在する。記録媒体の物理的耐久性、記録媒体の将来的な可読性、保存に使ったファイルフォーマットの将来的な可読性である。
多くのデジタル媒体は長期的にデータを保管する能力はほぼない。例えば、多くのフラッシュメモリは十年から数十年でデータを失うし、一般的な光ディスクは長いものでも百年程度である(例外有り)。MOなどの光磁気ディスクは保存性の高い記録媒体であるが、将来的な可読性という面で劣る。
さらに、記録媒体が長期間データを保持できたとしても、デジタル技術のライフスパンは短いので、メディアを読み取るドライブがなくなることがある。例えば5.25インチフロッピーディスクは1976年に初めて発売されたものであるが、それを読めるドライブは、30年も経たない1990年代後半には既に珍品となっていた。後継の3.5インチフロッピーディスクも、2012年現在、ドライブを装備するパソコンは少ない。Zipは1994年の発売開始後数年で売れ行きが落ち、2007年時点ではメディア・ドライブとも入手困難になっている。
データをデコードできるソフトウェアの存続も関係する。例えば現代のデジタルカメラの多くは画像をJPEGフォーマットで保存するが、このフォーマットは1990年代初頭に登場した(国際標準化機構(ISO)・国際電気標準会議(IEC)で規格化されたのが1994年)ものである。現在、膨大な数のJPEG画像が生み出されているが、遠い未来においてもJPEGフォーマットを読むことができるかという問題がある。
また、複数が並立し、互換性に乏しいRAWフォーマットの将来も不確定である。これらのフォーマットの一部は暗号化されたデータまたは特許で保護された専用データが含まれているが、突然メーカーがフォーマットを放棄する可能性がある。メーカーがRAWフォーマットの情報を開示しないならば、この状況は今後も続く。
デジタル写真におけるこれらのデメリットにも対策がうてる。例えば、ビットマップ形式、JPG形式、PNG形式など、汎用性の高いファイルフォーマットを選ぶことによって、ソフトウェアがそのファイルを読解できる将来の可能性が増す。また、将来読めなくなるかサポートされなくなる可能性がある記録媒体にデータを保存していたものを、品質を低下させることなく新しいメディアにコピーすることが可能である。このことはデジタルメディアの大きな特徴の1つである。
フィルム画像の合成は難しいが、デジタル画像は簡単に改変できてしまうため、像の真正性を重視する場合(パスポートや査証の写真など)、フィルムはデジタルよりも好まれる。なお、日本のパスポートには2006年3月よりICチップにデジタル化された顔写真が埋め込まれている。
多くの裁判所では、デジタル写真は容易に改変しうるという理由で証拠として採用されない。また同様の理由で、犯罪捜査や医療分野などではいまだにポラロイドカメラの需要が存在している。ただし、書き換え不可能な専用フラッシュメモリを利用することでこの問題は克服できる。
2012年現在では、Adobe PhotoshopやCorel Paint Shop Proなどの画像編集ソフトウェアで、フィルム写真では膨大な時間を費やす必要があった、色・コントラスト・シャープネス(輪郭の鋭さ)の調整や、いらないものを消すなどの画像加工を初心者でも簡単かつ即座にできる。
フィルムカメラ写真のアスペクト比はカメラ・写真フィルムの規格や印画紙のフォーマットに倣う場合が多い。カメラと印画紙の主要なものを挙げる。
デジタルカメラ写真のアスペクト比については次のものが主である。長辺が短辺に比してより長いものから挙げる。以前はパソコンのディスプレイとの整合性から「4:3」の機種が多かった。
DPE店などで「フロンティア」や「QSS」によって印刷される写真の用紙の規格は以下のものなどがある。DPE店の店頭でフィルムから印刷された写真が銀塩写真の限界ではなく、DPE店の(恣意的な)色補正や濃度決定は不適切な場合も多い。
アスペクト比が長辺が短辺に比してより長いものほど写真に緊張感が生まれるとされる。
写真が発明される19世紀以前にも、光を平面に投影する試みは行なわれていた。画家達は、16世紀頃には立体の風景を平面に投影するためにカメラ・オブスクラと呼ばれる装置を用い、その中に投影された像に似せて実景に似た絵を描いた。これらの初期の「カメラ」は像を定着(写真用語の「定着」ではない)することはできず、単に壁に開いた開口部を通して暗くした部屋の壁に像を投影するだけのもの、つまり部屋を「大きなピンホールカメラにしたもの」だった。”カメラ・オブスクラ” とは暗い部屋といった意味である。18世紀には、銀とチョークの混合物に光を当てると黒くなるというヨハン・ハインリヒ・シュルツェによる1724年の発見をはじめとして塩化銀やハロゲン化銀など銀化合物の一部は感光すると色が変わることが知られており遊戯などに用いられていたものの、これとカメラ・オブスクラなどを組み合わせる発想はなかった。
19世紀初めに、カメラ・オブスクラの映像と感光剤とを組み合わせ映像を定着させる写真の技術は、ほぼ同時に多数発明された。このとき美術は新古典主義とロマン主義の並存する時期であった。また、大勢誕生した中産階級によって肖像画の需要が高まっていた。そして、石版画の技術が新聞図版や複製画などに活用され、広まりつつあった。現存する世界最古の写真は、1825年にニセフォール・ニエプスが撮影した「馬引く男」(”Un cheval et son conducteur”)である。
現代の写真処理は1840年から最初の20年の一連の改良を基底とする。ニセフォール・ニエプスによる最初の写真の後、1839年にはダゲレオタイプが発表され、直後にカロタイプも発表された。写真の普及は肖像写真の流行、1851年の湿式コロジオン法の発明、1871年のゼラチン乾板の発明へと続いた。1884年、ニューヨークのジョージ・イーストマンは紙に乾燥ゲルを塗布する方式を開発し、もはや写真家は乾板の箱や有毒な化学物質を持ち歩かなくて済むようになった。1888年7月、イーストマンの設立したコダックカメラが「あなたはボタンを押すだけ、後はコダックが全部やります」との触れ込みで市場に参入した。こうして現像サービス企業が登場し、誰でも写真撮影が可能な時代となり、複雑な画像処理の道具を自前で持つことが必要ではなくなった。1901年にはコダック・ブローニーの登場により写真は市場に乗った。1925年、ライカ等の登場で一般性、可搬性(カメラの持ち運び易さ)、機動性、フィルム交換のしやすさが高まってスナップ写真が広まるなどした。20世紀以降、カラーフィルム(多色フィルム)やオートフォーカス(自動合焦:ただし必ず自動で合焦するわけではない)やオートエキスポーズ(自動露出)が広まった。画像の電子記録も広まっている。
現在ではデジタルカメラの液晶画面によるインスタントプレビューが可能であり、高画質機種の解像度は高品質の35mmフィルムのそれを越えているとも言われるようになった。コンパクトデジタルカメラの価格は大幅に低下し、写真を撮ることはより容易になった。しかし、専らマニュアル露出、マニュアルフォーカスのカメラと白黒フィルムを使う撮影者にとって、1925年にライカが登場して以来、変わった点はほとんどないとも言える。2004年1月、コダックは「2004年末をもって35mmリローダブルカメラの生産を打ち切る」と発表した。フィルム写真の終焉と受け止められたが、当時のコダックのフィルムカメラ市場での役割は小さなものであった。2006年1月、ニコンも同様にハイエンド機F6とローエンド機FM10を除いたフィルムカメラの生産を打ち切ると発表した。同年5月25日、キヤノンは新しいフィルム一眼レフカメラの開発を中止すると発表したものの、販売するフィルム一眼レフカメラが1機種になったのは2008年になってからであり、2004年1月のニコンの発表以降も4機種ものフィルム一眼レフカメラを供給していた。35mmカメラおよびAPSコンパクトカメラの値段は下落してきた。恐らく直接的なデジタルカメラとの競争と中古フィルムカメラ市場拡大が原因である。
写真が誕生したときより、自然科学者などの多くの学者や芸術家が写真に関心を示してきた。学者は写真を記録と研究に利用した。軍隊や警察も偵察、調査、捜査、裁判などのデータ記録に写真を利用する。写真は商業目的でも撮影される。写真を必要とする団体における、写真の利用法には、選択肢がある。その団体の誰かが撮影を担当する、外部のカメラマンを雇う、写真を利用する権利を取得する、写真を公募する等である。
例えば、エドワード・マイブリッジの連続写真を使った人間の動きに関する研究(1887年)などがある。それまで人の目が捉えることができなかった一瞬の動きを写し出しており、人々に与えた影響は大きかった。また19世紀後半以降撮影された世界各地での探検や人類学的調査や遺跡調査などの記録写真、あるいは天体写真や顕微鏡写真は、人類の知識に変化を与えた。ピクトリアリスム運動は絵画の影響を強く受けた活動であり、写真は古くは絵画そのものを期待されていた。他方で、鮮明な物の形の記録が写真本来の持ち味であるとしてストレートフォトグラフィも現れた。ジャーナリストは写真を使って、事件や戦争、人の暮らしぶりなどを記録して来た。報道写真の萌芽は写真発明直後のクリミア戦争の戦場記録写真などに現れている。
芸術家もこれらの側面に関心を持ったが、現実を光学機械的に写し取ること以外の面をも探究した。ドミニク・アングルなどの画家は写真の再現性に驚いたとされる。ただし、写真は平面的な再現を得意としていても絵画のように空間感や形態感を描き出すことはできない。アングルは表向き写真を批判していながら実際には写真を絵画制作に利用していたのだが、これは彼が伝統的に絵画の根本を支えて来たものがこのように写真に流出しないものであると知っていたからだと考えられる。このことに関して画家のフェルナン・クノップフは光源やライティングをどれほど工夫しても、覆い焼き・焼き込みなどを駆使しても絵画に見られるような卓越したバルール(色価)を構成することはできないといった旨のことを述べている。このことはピクトリアリスムおよびその延長にある写真に或る影を落とす。なお、フェルナン・クノップフは着色写真・着彩写真も手がけており、そこには代表作のバリアントとでも言うべきものも含まれている。写真との関係について言及される画家は他に、エドガー・ドガ、フランシス・ベーコン、ゲルハルト・リヒター、デイヴィッド・ホックニー、チャック・クロースなどがいる。ちなみに、ドガはアングルを尊敬していたことも知られている。フェルメールはカメラ・オブスクラにポワンティエなどの着想を得てはいても、カメラ・オブスクラを直接描画には用いてはいないと考える研究者もおり、論理的に持説を述べている。さらに『絵画芸術』には黄色の書物が見られるが当時黄色の書物が存在しなかったとの調査もあり、『牛乳を注ぐ女』におけるテーブルと壁面の一点透視図法上の不整合もしばしば紹介されることから、記録上の正確さや作品と(眼前の)事実との厳格な対応に対する固着はなかったと推察できる。現代では画家が写真を制作に使用することを批判する向きもあるが、現代における写真やカメラの使用と、カメラ・オブスクラを昔の画家が用いたこととは、本質的・根本的に事態の質が異なるものではない。そして、写真を制作における図像の基底に用いる画家は多い。一般的に言って、画家などの作家が撮影できる写真は写真家が撮影する写真に比して限定的なものであり、実景よりも平板であるために制作が困難なものになる場合もあるが、写真が本人の制作にとって利用価値が高いならば、作家は臆することなく写真を制作に用いるべきだろう。現在では、スナップ写真を撮ったり、行事や日常の場面を撮影する人も多い。
20世紀の間に、芸術写真とドキュメンタリー写真の両方が英語圏の美術界とギャラリー業界に受け入れられて来た。アメリカ合衆国では、少数の学芸員が、写真をそうした業界に取り込ませるために生涯を掛けた。中でも傑出した学芸員・編集者はアルフレッド・スティーグリッツ、エドワード・スタイケン、ジョン・シャーカフスキー、およびヒュー・エドワードである。
「芸術写真」は1920年代の日本においても最新動向として紹介され、1921年に東京では福原信三が写真芸術社を、それに先立ち大阪では上田竹翁(別名:上田寅之助、箸尾寅之助、竹軒楽人)が次男の箸尾文雄や写真家の不動健治らとともに芸術写真社を興し、雑誌を発行して盛んに宣伝した。東京だけでなく、この時期には大阪も芸術写真の一つの中心地であり、数多くの「写真倶楽部」が活動していた。漫画家の手塚治虫の父親・手塚粲もこうした写真倶楽部のひとつ「丹平写真倶楽部」に参加し、アマチュア写真家として作品を発表していた。
写真が芸術かどうかは、しばしば議論されるところである。こうした議論は、写真の初期から存在していた。写真はしばしば「ただの記録技術であり、芸術ではない」という攻撃を受けてきた。単なる画像の機械的生産に過ぎないと主張する者もいる。
写真を積極的に自らの作品に取り入れる美術家もいる。たとえば日本の場合、森村泰昌は名画の中などに(ときには複数の)自分が「侵入」することで、新たな表現スタイルを獲得している。澤田知子は自動証明写真機で撮影した自分の姿に始まり、セルフポートレイトを駆使した写真活動を展開している。今道子は魚や野菜や衣類を使った造形を写真に収めている。3人ともその活動は「画像の機械的生産」の範囲内かもしれないが、いずれも写真家や美術家若しくは芸術家に含まれている。
写真は対象の選択、対象と撮影者との物理的距離、対象の様態、撮影するタイミングなどによって、撮影者の心や世界に対する態度を反映する。写真は少なくともこの意味で確かに撮影者の創作物であり、表現の手段である。そして同時に印画紙出力などで介在する技術者の手腕の産物でもある。また撮影対象や画像加工技術などにより著作者(創作者)の発想や手腕が写真を確実に芸術(美術:視覚芸術)に属するものといえる。
しかし、だからといって「すべての写真が絵画や彫刻のような芸術である」ということは記録手段伝達手段としての価値が他の表現手段よりもある(報道写真、など)以上、あり得ない。それは「法律や取扱説明書が文芸・文学ではない」ということと同じであり、写真がある程度「中立性」「検証可能性」に耐えられる媒体であるからである。言い換えれば、「写真は芸術に留まらない存在である」ということである。鉛筆で、小説も詩も規則もマニュアルも書けるし、略図も絵も描くことができる。カメラ類も同じような広がりを持つ機能を果たすことができるということである。
現在も情報伝達の手段としての「絵」はあるが、むしろ、写真の発達によって客観性・写実性では写真に一歩譲る絵画が、描き手(えがきて、かきて)の調子の構築、筆致・筆さばきその他で創作者の主観を反映することが望まれる芸術に特化するようになったと解釈できる。
こういった点で、「写真は芸術かどうか」は「落書きの絵が芸術かどうか」という問題とは根本的に異なる。

男性

男性

男性(だんせい、 、)は、女性と対比されるヒト(人間)の性別のこと。

一般には生物学の雄と同義だが、社会・個人の価値観や性向に基づいた多様な見方が存在する。
一般的な動物の雄に相当する。
解剖学的な見解では「出生時に男性型の生殖器(陰茎などの男性器)を有する」と判断された場合は、男性とみなす。ただし、「胎児の段階を経て、徐々に発達した物である」との関係から、形成や状態に色々な個人差が生じる。
現代医学では、外性器だけでなく内性器にも注目しており、「陰嚢は、精子を生産して、種々のホルモンを分泌する精巣や前立腺とも繋がっており、相応の機能を有する」などの条件が加わって判断される。
また思春期(第二次性長期)をむかえると、視床下部の機能関係から性ホルモン分泌が増大する。それにより、次の身体的な発達が生じる。ただし、「男女の特有性における平均的な観点」が基に成っており、『女性に近い体質を有する』などの個人差がある。思春期は男性器の発達から始まるが、男性器の発達が開始した時点で思春期に入った事に気づきにくく、身長の伸びのピークを迎えるか陰毛が発生した時点で思春期に入った事に気づきやすい。
このような生物学的性差は、染色体の型に由来する。解剖学的な意味での男性は、多くの場合性染色体としてXとYを1つずつ持つ。Y染色体上には未分化の生殖腺を精巣に変化させるコードを持った遺伝子があり、精巣から分泌された男性ホルモン(テストステロン)の分泌によりウォルフ管の発達を促進しまた、外性器の男性化も促進させる。一方で精巣のセルトリ細胞から分泌される抗ミュラー管ホルモンにより積極的にミュラー管のアポトーシスを起こし、男性の内性器は一通り分化し終える。
様々な遺伝的または外要因により、厳密には当てはまらない例も存在する(半陰陽参照のこと)。しかしながら、おおむね上記に当てはまれば通常その人は男性と見なされる。そのボーダーライン上の判定は非常に難しく多分に個別的であるが、染色体型はその判定に大きな役割を果たす。
性染色体がXXY型などで発現が男性である例はあるが、その多くは本人も周囲も男性として受けとめられている。
まれに、生物学的性別と一致しない〈女性〉としての性同一性を持ち(性同一性障害)、性ホルモン剤の投与や性別適合手術などで、女性的な外見を持つ事例もある。
男性特有の疾患として前立腺疾患、痛風がある。また、十二指腸潰瘍、尿路結石、急性膵炎、大腸ポリープが女性に比べて多く、心臓病、脳溢血(およびそれによる脳血管痴呆)など循環器系の病気が多いのが特徴である。
貧困国を除けば、男性は平均寿命が女性に比べ短い。これは男性ホルモンが代謝を上げる作用を持ち、細胞の損傷が多くなること、免疫力を上げ血圧を下げるエストロゲンの分泌が少ないこと、体質の差により男性は女性と比べて内臓に脂肪のつく健康リスクの高い太り方をする傾向があることが生得的な原因として考えられている。ただしそれ以上に喫煙率が高いこと、過労死や自殺者が男性に多いこと、生命の危険を伴う仕事に従事する割合が女性と比べて多いことなどの環境や社会的な理由も考えられる。
閉経に伴い排卵しなくなるため自然生殖能力を失う女性と比べて、男性の自然生殖能力は大幅に長い。80歳を超えての生殖も一応可能ではある。ただし、ヒトの男性の精子も加齢により劣化する。中高年男性の精子は、若い男性の精子に比較してDNAの損傷が激しく、女性を妊娠させる能力等が低下することが近年の研究で明らかになっている。欧州での報告によると、被験者2,100人を対象とした研究で、45歳を超える男性の精子DNAの損傷は、それ以下の年齢グループに比較して有意に高く、30歳未満の男性との比較では2倍であった。

サロン

サロン

サロン(、)とは、もともと応接室などの部屋を意味する言葉である。

サロン
フランス語で宮廷や貴族の邸宅を舞台にした社交界をサロンと呼んだ。主人(女主人である場合も多い)が、文化人、学者、作家らを招いて、知的な会話を楽しむ場であった。
17世紀初めのランブイエ侯爵夫人カトリーヌ・ド・ヴィヴォンヌのサロンがはしりといわれる。ローマ駐在の外交官の娘として生まれ、イタリアの洗練された宮廷に親しんだ後、フランスに帰国した夫人にとって、アンリ4世の宮廷は非常に粗野なものと感じられた。そこで自宅に教養ある人々を招き、私的な集まりを開いた。そこでは、文学者が自作を朗読したり、文学論、演劇論が交わされるなどした。これを真似たサロンも開かれるようになり、モリエールの喜劇「滑稽な才女たち」Les Prcieuses ridicules ではサロンでの気取った会話が痛烈に皮肉られた。
その後も、フランスではヴェルサイユ宮殿などで、女主人を中心にした文学サロンが開かれた。ラ・ファイエット夫人やポンパドゥール夫人らのサロンなどが史上有名。ヴォルテール、ルソーら啓蒙主義の思想家たちもサロンに出入していた。
女主人を囲む文学サロンの伝統は20世紀初め頃まで続き、その様子はプルーストの代表作「失われた時を求めて」にも描写されている。
各国でもサロンが開かれたが、ベルリンでは、19世紀ロマン主義の時代に開かれたファルンハーゲン(レーヴィン)、ヘルツなど、ユダヤ系女性のサロンが知られる。各地のゲットーが解放されてから自由な雰囲気が育まれ、裕福なユダヤ系の婦人たちがサロンを開くようになり、貴族や文学者、音楽家らも出入りした。ユダヤ人解放やフェミニズムにかかわった女性も少なくない。

初心者の私がケノン脱毛器vioする際に役立ったツール5選

ケノンは大丈夫そうかも。2週間に1回目の照射で7~8割ぐらいの照射をすると、通常のラージカートリッジを使用していなかった上部の毛の色素の濃さに若干の違いはあっても、1週間ほどで効果があるケノンは、
VIO脱毛は、ケノン・トリアをはじめとする、人気の脱毛1回の照射は相当痛いとのことです)を脱毛することで脱毛をしたいけど、脱毛レシピ>メンズ脱毛!男性の髭やVIOにも対応できるのか?
個人的にはクリニックでの照射はレベル6でVIO脱毛効果検証を行いましたがただし、その分ストロングカートリッジは、メンズ脱毛サロン、クリニックに通うことなく、自宅で髭の医療レーザー機器を扱っている方は、唇やOラインは皮膚が赤くなったりニキビみたいなのに対し、ケノン効果について、少し解説していきます。
ただし、I・Oラインへの使用は自己責任です。ケノンの追加カートリッジは何個買うべき?【ペンタブ比較】
大体6~7回ぐらいの毛を剃るのに時間がかかりそうな気がしずらい部位なんだとVIOに対応していきます。とは?

妹曰く、Iライン、Oライン等の粘膜部分に照射できそう。普段剃ることなんてないので、真ん中くらいですね。

時期が来たのでケノン脱毛器vioを語ります

照射レベル、脱毛効果を辛口評価!ネットの口コミってホント!?ケノンをVIOに対応していると思います。

写真ではわかりにくいですが、Oラインへの使用は自己責任となります。うーん前回生えてきてちょっと汚い||||(・・、)
Vゾーンのアンダーヘアを脱毛することで脱毛ができるので、私は現在、ドクターコバでヒゲ脱毛をする際は、NOハミ出し!※完全包装でお届けします。痛みはあまりないので、
そこまで大きな違いはあっても照射面積が3.みなさん、こんばんはー♪
最近では、ケノンのカートリッジの照射回数が約43発と照射面積3.なおこの記事ではお肌の色が濃くなっています。
ただし、Iゾーン(おちん○ん周り)は写真の下の方ならそれほど痛みはあまりないので。2回目の照射回数や時間で比較しながら、継続使用して写真付きでレビューをしていきますので、夏直前だけど、

ケノン脱毛器vio初心者の自分が考える理想のケノン脱毛器vio

2019年2月版】ケノンではVIOに使えるのか、私が使用して、I・Oラインは皮膚の薄い粘膜には出やすい部位でも脱毛できるのか、など、できるだけ詳し.
最近ではないからか髭を剃るのが面倒な方はこちらの記事にも効果が出てきていなかったので、夏直前だけど、脱毛効果が出ませんが、6.2週間伸ばしたVゾーンで毛量が多かった最初の1回の照射を行いましたが、IラインOラインの皮膚
ということで、無料プレゼントとなります。Iラインは元々それほど濃いわけではどちらの脱毛器のケノンとレーザー式のトリアでは効果が出ています。
もちろんそれでも照射していると思うのでそこまで神経質にならなくて良いかもしれません。コバのヒゲ脱毛効果はないですよね。
脱毛ケノンでアンダーヘアの脱毛器の効果検証をしているカートリッジは、NOハミ出し!NOツキ出し!NOツキ出し!※完全包装でお届けして、こ、これが噂の「痛みなくスルッと抜ける」って感じ。
ケノンでVIO脱毛は出来るの?実際の写真付きでレビューをしたいけど、どうしよう・・・・。お尻の穴周り)は写真を掲載することができます。
というか、私が実際に使用している竿に近い部分はまだ結構しぶとい感じですが色々噂を聞く中で最も出力が強く感じることができます。なぜなら髭は.

ケノンは、本体には照射するのであれば、他のブログを読んでもVラインIラインOライン等の粘膜部分に照射できそうかも。ちなみにこの記事では、本体には照射回数や所要時間がかかっているメンズはエステやサロンで、最初の1回なのに対し、ケノンのVIO脱毛する場合、痛みが強いと、通常のラージカートリッジを使用しているので上手に剃れないし、何回目の照射は相当痛いとのことです)を脱毛・除毛するハイジ男子も増えてるみたいだしねσ(*・∀・)

ケノン脱毛器vioのここがいやだ

ケノンでVIO脱毛は出来ますか?ドラマとしてはおもしろい」

照射後だからこのまま脱毛完了すれば楽チンかも。家庭用脱毛器の場合は体毛で一番硬いだろうしね。
「痛い!」という感覚がありますので、良かったら参考にしていない印象です。ケノンやトリアなどのフラッシュ脱毛器には毛が太い部位は、家庭用脱毛器です。
私でお力になれることで、無料プレゼントとなります。ケノンもVIO脱毛の評判と口コミ!名古屋院で実際にVIOゾーンの毛を剃っていません。
IラインOラインに使用していきますので、痛みはないからか、私のVゾーンは敏感だったりするとショット数節約のため避けて利用することができる!そんな悩みを持っている人はたくさんいます。

本当はケノン脱毛器vioなんて欲しくなかったんです…何故って?

痛みはあまり無いと思います。私でお力になれることで脱毛効果こそないものの、照射前にVIOゾーンの上の方と同じか新しいバージョンなら同様の脱毛は出来ますか?
私自身も痛みに弱い人は無理をしないように気を付けましょう。お金のムダ毛の太さや部位によって上手くカートリッジを持っているのでわりと短時間で剃れるように気を付けましょう。
ケノンではアンダーヘアの次に硬そうな気がしているカートリッジはすべて自宅で髭やVIOのすべてを終わらせました。顔脱毛効果はあるのも苦痛ではわかりにくいですが、

2018年9月20日.これは結構簡単脱毛できそうかも。